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1. I;\1TRODUCTION

In a very recent paper, L. Colzani [2J studied the problem of monotone
approximation of a function by its Fejer means. Of course, the approxima­
tion is monotone in L 2( T), but he proved that this is no longer true in
C( T). Nevertheless, there is a good control of the oscillations of this
approximation.

In this paper we show that it is hopeless to find a monotone approx.ima­
tion in C( r") whatever is the approximate unit we can use and we prove
that results similar to that for the Fejer means hold for a large class of
approximate units.

2. RESULTS

If N?: 1, let z,v be the lattice of integer points of R''' and T'" = R'v.,z'
the iV-dimensional torus. Let us denote by E, indifferently, the Lebesgue
space LP(T''), 1~ P < +x, or the space of continuous functions qT")
and denote their norm by :1 Ii B; for convenience we identify TV with
[_~,~)v.

Let us recall that an approximate unit (or summability kernel) is a
family {K,LER- where

(i) K,EL1(T') and IIKJ1~MV:r.;

(ii) fr' K,(t) dt = 1 V:r. > 0;

(iii) for every £>0 lim,~o+ JIr:;;;'£.lET' jK,(t)! d(=O.

It is well known (see, e.g., [1, p.31]) that if:r.-->O+
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and obviously by the Plancherei theorem if IKx(j) I i 1 V}, then
IIKx * f - J:[2l o.

Now we show that if B = C( T S
) this is never the case. Indeed for every

given {Kx }" E R- and for every ct l > ct2 > 0 there exists a function f such that

This result follows from

THEOREM 1. Let K I ,K2EL I (T'V), K I -#K2 • Then there exist
gl' g2 E C(TN) with jl gill ex; = II g211 ex; = 1 such that

J1(bo-KI ) * gill ex; > j;(bo-K2 ) * gill",

II(bo-Kd * g211x < II(bo-K2 ) * gzllx,

where bo is the unit mass in the origin.

(2.1 )

(2.1' )

Making some more assumptions about {K"LE R- and generalizing the
methods of [2J, we can give more refined results, which hold in particular
for classical kernels.

THEOREM 2. Let us suppose Ky' E L 2( T"') and Kx (j) -# 1 for every} -# 0
and for every rx. Then for every {J> 0 and e > 0 there exist ct, 0 < ct < (J, and
f E C( TN) such that

Ilf - K" * fll x > (2 - e) Ilf - Kp * fll x' (2.2)

THEOREM 3. With the same hypotheses as in Theorem 2, for every (J > 0
let us set Ap=sup".::p iIK"III' Then there exist qJp, l/Jp: R7 -R+ with
lim x-0 qJp(ct) = 0, l/J p(ct) ~ 1, lim supx _0 l/J p(ct) ~ 1 + A p, such that if fEB
and 1'.1. < {J

3. PROOFS

Proof of Theorem 1. Let 0">0 be such that if EE TN, lEI <0" (lEI is the
Lebesgue measure of E),

i= 1, 2. (3.1 )
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Since h\ jKdt) - K2 (t)1 dt oF 0, there exist a sphere S = 5( to, p) with radius
p < fi to!;/2 and lSI < a/2'v and a function ({>to C( T Y

) with support in S such
that

'f I -~
li£P:I ex - 2' \ (K t U)-K2 {t))£p(t)dt=a,

·s
(),2)

where a is a real positive number,
If

we have 1:'[ < -fa and

1/

11 + r Kt(t)£P(t)dt!=i1+a+i'I=ll+i'!+h
'S I

with b >0.
Let us take r, O<r<~min(a, I:to!! -2p) such that for every f, !!tr ::::;",

i = 1. 2. (3.3 )

Let t/J E C( TV) be a non-negative function with support in S(O, r) such that
!/J(O) = 1, !It/Ji: x = 1, and

Let us set now

VtE TV. i= 1, 2. :3.4)

i = 1, 2.

By construction, we obviously have Ii g I if x = 1 and

3
>Il+}'!+-b.

4

Moreover, if lit![ > r, by (3.1) we have

I(6 0 - K2 ) * g d t)! < ~ + fa + :2t = ~,

(3.5 }

(3.6)
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In the case II til ~ r we have

and, by (3.3) and (3.4),

l(c5o-K1 ) * gl(t)1 ~ 1l/J(t)+K2 * <p(0)1 +~

b
= Il/J(t)+yl +2'

Because 0 ~ l/J(t) ~ 1 and II'I < fa we have, for Ilt!1 ~ r,

Then by (3.5), (3.6), and (3.7) it follows that gl verifies (2.1).
In the same way it can be proved that g2 verifies (2.1').

For the sequel we need the following

LEMMA. Given the same hypotheses as in Theorem 2,

(3.7)

(3.8 )

where cPx,P is the Fourier-Stieltjes transform of a Borel measure Vx,p of the
form

Vx,p = Do - K x+ )lx,P (3.9)

with 1!)lx,pilM--'O ifct.--.o+ for every P>O, where II 11M is the usual total
variation of the measure.

Proof We have

(f -K * f)" =(f-Kx*f)" (f-K * f)"
x. (f - K p * f) " p •

= cP rx•P • (f - K p *f) ",

where for every j # 0
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Because (l - K" (j) )/(1 - Kp(j)) is bounded, ep ~.p = v".1i and the measure
~"./3 in (3.9) is such that

Then ;:,Ux.pj;2~O if :x-O+ for every ,8>0. Since i:f1d/l~i;,u~,P;:2 the
Lemma is proved.

Proof of Theorem 2. Let e> O. By (3.9) and K,,(O) = 1 we have for every

13>0

Then for :! small en.ough there exists a continuous function g with
:: gil ox = 1 such that

V",/3 * g(O);:: 2 - 8

and g can be chosen with g(O) = 0 because of (iii).
Since

there exists a Borel measure tip such that fl.B = 1/(1- KrJ for j i= O. This
implies that there exists a continuous function f such that

r g
J=--'-

l-Kp

For such a function f we have

if j =1= O.

f -Kp *f= g

and (3.8), (3.10) give

;:: (2 - e) iif - K p .. n x:'

Proof of Theorem 3. By (3.9) we have for every f3 > 0
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Then (2.3) holds with l/J p(7.) = 1 in the case B=LI(TV
) or B= qT'l

If B = L 2
( TN) then since

we have

lif - K" *fil2 <sup II -~, (~) l'lif - Kp * fl12
NO l-Kp(;)1

= l/Jp(7.)':If - K p* f112'

Obviously, l/J p (7.) satisfies the hypotheses in the statement.
By interpolation we get (2.3).

4. RnfARKs

1. Theorem 1 is trivial if there exist jl' j2 such that

2. The proofs of Theorem 2 and the lemma show that the hypothesis
K" E L 2( TN) ('X E R + ) is only used to prove that for every f3 > 0 the function
1/( 1- Kp) is a Fourier-Stieltjes transform of a Borel measure, for j of O.
Then Theorems 2 and 3 hold in many other situations.

3. Usually, 11K" III = 1 for every 7.. In this case A tl = 1. If moreover
k" (j) 'II if 7. ~ 0+ for every j, then Theorem 3 has a more appealing form.
Indeed (2.3) becomes

IIf-K" *f:IB< {2+<pp(7.)}12'p- I1 :If-Kp *fliB'

4. We have already observed that Theorems 2 and 3 hold for the
classical kernels: Fejer, Poisson, Gauss. Moreover it is possible to apply
these theorems to other cases, such as the kernels K" studied in [3], where
K" (n) = 1/(1+ (JP(n )), and P is a suitable homogeneous polynomial of
degree k, when k> N/2, that is the more important case for the applications.

5. It is worth mentioning that for the Gauss--Weierstrass kernel in R
there is monotone convergence for the class of convex functions [1,
p. 154]. This suggests that Theorem 2 may be no longer true for particular
kernels if we restrict ourselves to suitable subclasses of q TV).
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