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1. INTRODUCTION

In a very recent paper, L. Colzani [27 studied the problem of monotone
approximation of a function by its Fejér means. Of course, the approxima-
tion is monotone in L3(F), but he proved that this is no longer true in
C(T). Nevertheless, there is a good control of the oscillations of this
approximation.

In this paper we show that it is hopeless to find a monotone approxima-
tion in C(T") whatever is the approximate unit we can use and we prov
that results similar to that for the Fejér means hold for a large class of
approximate units.
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2. REstCLTS

A

If N> 1, let Z" be the lattice of integer points of RY and 7%= R"/Z
ot

the N-dimensional torus. Let us denote by B, indifferently, the Lebesgue

space LP(T™), 1< p< +ac, or the space of continuous functions C{T™)

and denote their norm by | ;5; for convenience we identify 7T with
i L)N
2227 -

Let us recall that an approximate unit {or summability kernel} is a
family {K,},. - where
(i} K,eL'T"jand [K,|, <M Vz;

(i) (K (1) dt=1VY2>0;
(lll) for cvery e>0 lim"”o‘* }‘l!'.iza.te ™ lK:(!)l dr =0,

1t is well known (see, e.g., [ 1, p. 31 Y that if x > 0+
[Kyx f—=f12—0
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and obviously by the Plancherel theorem if |K,(j)|11 Vj, then
1K, = f—fl.10.

Now we show that if B= C(T") this is never the case. Indeed for every
given {K,},. - and for every , > x, > 0 there exists a function f such that

Hsz *f—f]::c > “Koq *f_fl\:.c
This result follows from
THEOREM 1. Let K, K,eLNT"), K,#K,. Then there exist
81> 826 C(TY) with | gl = | g2l . = 1 such that
(00— Ky) * 841 > {00 — K3) * g4l e (2.1)
(00— Ky) * g3l e <1(80— K3) * 2l s (2.1')
where Jq is the unit mass in the origin.

Making some more assumptions about {K,}, . .- and generalizing the
methods of [2], we can give more refined results, which hold in particular
for classical kernels.

THEOREM 2. Let us suppose K, € LX(T") and K,(j)# 1 for every j#0
and for every a. Then for every f>0 and ¢ >0 there exist 1, 0 <a < p, and
feC(TY) such that

= Kex flle> Q=) If = Kp* fllc- (22)

THEOREM 3. With the same hypotheses as in Theorem 2, for every >0
let us set Ag=sup,z |\K,ll,. Then there exist @z, Yg: R™ > R™ with
lim, Lo @s(2)=0, Yz(x) =1, limsup, ., Ys(2) <1+ Ag, such that if feB
and a < f§

If =Ko * fla<tp(@)!' =P {1+ Ap+ @p()} 277N I f =Ky * f15. (23)

3. PrROOFS

Proof of Theorem 1. Let ¢ >0 be such that if Eec T, |E| <o (|E| is the
Lebesgue measure of E),

[ 1K) di<d,  i=1,2 (3.1)
YE
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Since jvx 1K, (1) — K, (t)| dt #0, there exist a spheru S=S{15,

[
(¥
&

o) with radius

p<lityr/2 and |S| < ¢/2" and a function ¢ € C{ T%) with support in § such

that

, 1 e
i%qohx:E, | (Ki(1)—K

if

we have I;

4] < 4 and

;1+|K1 qo(t)dfl=n1+a =14 +b

with 4> 0.

Let us take r, 0 <r < imin(o, |\1,!l — 2p) such that for every ¢

b
1K % (1)~ K; = 9{0); <Ea

I
.h-‘
b2

[¥8)
iNp

P
L}
()

Let s € C(T") be a non-negative function with support in 5(Q, r} such that

wil) =1, Iy =1, and
b A . ~
lKi*l/](t)i<Z Vie T, i=1,2

Let us set now

g(O=y)+ (=) o5 i=1,2

By construction, we obviously have ljg,[[_ =1 and

(30— K1) * £,(0)] = i”L K, (1) (1) di— K 5 4(0)|

-5>~|LM

Moreover, if ftli >r, by (3.1) we have

(06— Ky) * g1 (DI <i+H+5%=3%

W
tn

(5]
N



140 DE MICHELE AND ROUX

In the case ||¢] <r we have
[(00 — K3) * g ()] = (1) = Ky * Y(£) + K, * (2)]

and, by (3.3) and (34),

(80— K2) * () < (1) + Ky » 0(0)] 5
b
= W) 471 45

Because 0<y(1)<1 and |y| < 55 we have, for ||| <r,

b
[Go—Kz)* g1 (DI <I1+7]+5.

Then by (3.5), (3.6), and (3.7) it follows that g, verifies (2.1).
In the same way it can be proved that g, verifies (2.1).

For the sequel we need the following

LEmMMA. Given the same hypotheses as in Theorem 2,

(f—'Koz*f)A =¢1.B(f_Kﬁ*f)Aa

(3.7)

(3.8)

where @, g is the Fourier-Stieltjes transform of a Borel measure v,z of the

form

"'1,,8 = 50 - K.x + ”1./3

(3.9)

with ||p, gl sy =0 if x> 0+ for every §>0, where || ||, is the usual total

variation of the measure.
Proof. We have
=K+ f)°
(f—Kpgxf)"
=¢a,ﬁ'(f_Kﬁ*f)As

(f—K.*x)" (f=Kgx /)"

where for every j#0
1-K.())

@) =1 - Ro()+ By () 32D,
7 IR U)
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Because (1 — K, (/))/(1 —K,;(J)) is bounded, @, ;=
iy in (3.9) is such that

Then fu, 0, —0 if x—0+ for every 8>0. Since
Lemma is proved.

¥, and the measure

i i iy N £}
Wl phn S iy pha §

b

Proof of Theorem 2. Let ¢>0. By (3.9) and K,{0) =1 we have for every

7

>0

lim jlv, gl 30> 2 —

x—0

b l ™

Then for z small enough there exists a continuous function g with

tgil =1 such that

Vop* g(0)=2—¢

and g can be chosen with g(0)=0 because of {(iii}.
Sn
PN
L (1 & )

1-R;() N 1=K,y

there exists a Borel measure u, such that j,=1/{1 mii’ﬁ) for j#0. This
implies that there exists a continuous function f such that

1- K,

e

For such a function f we have
lf— KB * f‘= g

and {3.8), (3.10) give

I — v A { g
-'.f—Kx*fllzu:_l|"1.B* gl;x>i\2—8i 8 x

(2—5}']‘ KB*I{!EJ':

Proof of Theorem 3. By (3.9) we have for every >0

v, gl <UL+ A+ @pix)

with @z{x) =0 1if x -0+



142 DE MICHELE AND ROUX

Then (2.3) holds with y4(x)=1 in the case B= L' (T") or B= C(T").
If B=L*(T") then since

-k, (J)|

—K, = =Y ()12
I Koo SB= PO =

1=Ky ()P

we have

AJ' .
if—Kg* fll,
1— K, ()i g

=¢g(1 ‘”f‘Kp*fhz-

lif-Ka*fFleSup

Jj#=0

Obviously, ¥ 4(x) satisfies the hypotheses in the statement.
By interpolation we get (2.3).

4. REMARKS

1. Theorem 1 is trivial if there exist j,, j, such that
IR AVAEIIED ATANIEY AVAIRIIES AVAL

2. The proofs of Theorem 2 and the lemma show that the hypothesis
K, elL? (7" ¥) (we RT) is only used to prove that for every > 0 the function
1/11 —Kﬁ) is a Fourier-Stieltjes transform of a Borel measure, for j#0.
Then Theorems 2 and 3 hold in many other situations.

3. Usually, |K,|l;=1 for every a. In this case 4;,=1. If moreover
K,(j)11if «x =0+ for every j, then Theorem 3 has a more appealing form.
Indeed (2.3) becomes

f—K,*flg< {2_,_@5(“)}&@—1[ I f—Kg* flig.

4. We have already observed that Theorems 2 and 3 hold for the
classical kernels: Fejér, Poisson, Gauss. Moreover it is possible to apply
these theorems to other cases, such as the kernels X, studied in [3], where
K,(n)=1/(140P(n)), and P is a suitable homogeneous polynomial of
degree &k, when &k > N/2, that is the more important case for the applications.

5. It is worth mentioning that for the Gauss--Weierstrass kernel in R
there is monotone convergence for the class of convex functions [1,
p. 1547. This suggests that Theorem 2 may be no longer true for particular
kernels if we restrict ourselves to suitable subclasses of C(T™).
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